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Use of time-series analysis in infectious disease
surveillance
R. Allard1

This article reviews the practical aspects of the use of ARIMA (autoregressive, integrated, moving average)
modelling of time series as applied to the surveillance of reportable infectious diseases, with special
reference to the widely available SSS1 package, produced by the Centers for Disease Control and
Prevention.

The main steps required byARIMA modelling are the selection of the time series, transformations of the
series, model selection, parameter estimation, forecasting, and updating of the forecasts. The difficulties
most likely to be encountered at each step are described and possible solutions are offered. Examples of
successful and unsuccessful modelling are presented and discussed. Other methods, such as INAR
modelling or Markov chain analysis, which can be applied to situations where ARIMA modelling fails are also
dealt with, but they are less practical.

ARIMA modelling can be carried out by adequately trained nonspecialists working for local agencies. Its
usefulness resides mostly in providing an estimate of the variability to be expected among future observa-
tions. This knowledge is helpful in deciding whether or not an unusual situation, possibly an outbreak, is
developing.

Introduction
Early identification of an outbreak of a reportable
disease is the first step toward an effective interven-
tion to contain it. However, outbreaks are often
well under way before public health authorities
become aware of them. Time-series analysis based
on the Box-Jenkins or ARIMA (autoregressive, in-
tegrated, moving average) method models reported
cases over time and thereby permits forecasts to be
made of expected numbers of reported cases and
provides confidence intervals around these forecasts.
Having forecasts at hand to compare with the ob-
served numbers of cases can facilitate making a deci-
sion as to whether an apparent excess represents an
outbreak rather than a random variation. This article
discusses the use by nonspecialists of this method of
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time-series analysis for infectious disease surveil-
lance, paying particular attention to the circum-
stances that favour or hinder its usefulness.

Many textbooks and other sources (e.g. I and 2)
explain the theory of time-series analysis and several
statistical packages are available to carry out
the calculations involved, e.g. BMDP, S-PLUS and
SYSTAT. The reader interested in carrying out
ARIMA modelling needs to have access to such a
package. Since the Statistical Surveillance System 1
(SSS1) (3) is the most user-friendly software for
ARIMA modelling, we will refer to it repeatedly in
this article. It is produced by the Centers for Disease
Control and Prevention (CDC) and is available
free on the Internet at http://www.cdc.gov/epo/epi/
software.htm. All the figures in this article were gen-
erated using SSS1.

ARIMA modelling is theoretically sound and
practical, and it is not necessary to have a complete
understanding of the underlying statistical theory to
apply this method successfully (2). However, in
order to gain some understanding of the method
and be able to apply it prudently, a basic understand-
ing of algebra (square root, reciprocal, logarithm),
statistics (mean, moving average, variance, normal
distribution, significance, confidence intervals, good-
ness-of-fit, correlation, and partial correlation)
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and, less importantly, estimation techniques (least-
squares method, iterations, convergence), is needed.

All the examples are drawn from experience
gained in Montreal, Canada, whose population is 1.7
million, with about 8000 infectious disease notifica-
tions per year.

Selection of the time series
Time-series analysis requires a series of observa-
tions, repeated at equal time intervals (usually), on
the same population. For the forecast intervals to be
accurate, the observations should have a normal dis-
tribution, with a mean and variance that remain
constant over time (a property called "stationarity")
(1).

The series must not be subdivided into such
short intervals that the numbers of observations per
interval (case reports, in our context) are so small as
to be nonnormally distributed. The interval con-
cerned can be a day, week, a 28-day period, a month,
etc. (all series in this article consist of 28-day inter-
vals). However, for rare diseases only a few cases
may occur per interval, even if the interval is made
long, and ARIMA modelling may therefore not be
useful for such diseases.

The longer the series, the better; however, the
series should not extend so far into the past as to
include periods during which a different case defini-
tion was applied or in which any other reporting
artifact resulted in a mean number of cases per inter-
val that differs from the mean of recent intervals.

Experience shows that series with a clear perio-
dicity (i.e., the numbers of observations per interval
increase and decrease in cycles, generally of 1 year)
are more likely to lead to useful forecasts than series
without periodicity. Periodicity over 1 year is called
seasonality, and for seasonality to become apparent
the series should cover at least 2 years.

Should an outbreak have occurred during the
period covered by the series, one ought to consider
excising from the series the intervals containing the
excess cases, taking care to remove a whole year (or
several years) of intervals in order to retain any
seasonality present in the data.

Since the purpose of ARIMA modelling is to
generate useful forecasts, the series should contain
data of exactly the same nature as the forecasts re-
quired. For example, at the end of each 28-day
period, we report provisional numbers of reported
cases and these numbers are subsequently updated
when delayed reports are received or for many other
reasons. For purposes of early outbreak detection,
the forecasts are compared to provisional numbers
as soon as these become available; thus, the forecasts

and the series that generates them should also con-
sist of provisional numbers.

Transformations of the series
As discussed above, for adequate ARIMA model-
ling a time series should be stationary with respect to
mean and variance. If the mean increases or de-
creases over time, or if the variance does (as indi-
cated by the excursions around the mean becoming
smaller or larger over time), the series may need to
be transformed to make it stationary, before being
modelled.

To stabilize the variance, various transforma-
tions are available. Each observation can be replaced
by, for example, its reciprocal, logarithm or square
root. The SSS1 software can analyse the variance
of the series and propose a transformation. Our
experience indicates that such proposals should
not be accepted blindly. The logarithmic trans-
formation, which seems to be the one most often
recommended by SSS1, can be applied without
fear of complications; however, other transforma-
tions, if recommended, should be used with the pro-
viso that the original series be used or another
transformation tried if a satisfactory model is not
obtained. The reciprocal transformation, in particu-
lar, can make it difficult to fit a good model (see
below).

If necessary to stabilize the mean the series can
be "differenced". In the presence of a secular trend
in the series, regular differencing is indicated: each
observation is replaced by the difference between it
and the previous observation. In the presence of
clear seasonal variations, seasonal differencing is in-
dicated: each observation is replaced by the differ-
ence between it and the observation a year before.
Both types of differencing can be carried out on the
same series.

A simple inspection of the graph of the untrans-
formed series is the most useful approach. If a
clear secular trend or seasonal effect is observed,
the series should be differenced, otherwise not.
Similarly, only if the variance clearly increases
or decreases should some transformation be
applied.

In Fig. la) the solid line shows a series with a
clear yearly periodicity and slight fluctuations in its
yearly mean. Fig. lb) shows the same series after
seasonal and regular differencing. The first year of
observations are lost because they cannot be season-
ally differenced. The differenced series appears
stationary, with a variance that seems to decrease
only slightly over time. No transformation was re-
quired, in our opinion.
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Fig. 1. a) Provisional numbers of notifications of
Campylobacter infections, per 28-day interval,
Montreal, Canada, 1989-95, followed by forecasts for
1996, based on the differenced series (bold line: obser-
vations; thin line: forecasts; dashed lines: 95% forecast
intervals). b) Same series after regular and seasonal
differencing.
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Autocorrelation analysis and
model specification
Once the series has been made stationary, the
next step is to analyse its autocorrelation structure.
Autocorrelations are the correlations between each
observation and the previous one (lag one) or the
previous observation but one (lag two) and so on.
Partial autocorrelations are the same, except that the
effect of the intervening observation(s) is removed.
Clearly, for lag one, since there is no intervening
observation, the autocorrelation and the partial
autocorrelation are the same. SSS1 and other soft-
ware packages present autocorrelations of both
types graphically, up to a higher lag than is usually

needed, and show which autocorrelations are signifi-
cantly different from zero.

The size of the autocorrelations and partial
autocorrelations of various lags guides the selection
of terms to include in the initial ARIMA model. To
do this optimally requires a sophisticated knowledge
of the theory behind ARIMA modelling; however,
in most instances a few simple principles are enough
to do the job adequately.

An ARIMA model can include two sets of
terms (or parameters): "autoregressive" (AR) terms
and "moving average" (MA) terms. Each set can
include terms of any lag, termed "degree" in this
context. Autoregressive terms relate the observation
made at time t in the series to the observation made
at time t-1 (first degree), or to the observation made
at t-2 (second degree) and so on. Moving average
terms relate the error (difference between observa-
tion and estimated value) at time t to the error at
times t-1, t-2, etc. Both sets can also include seasonal
terms (of degree 12, 13, 52 etc. depending on the
interval between observations) and their multiples.

The initial model should include moving aver-
age terms that have the same number of degrees as
the significant autocorrelations and autoregressive
terms that have the same number of degrees as the
significant partial autocorrelations. It may also re-
quire a constant term, especially if a series showing a
time trend has been left undifferenced. SSS1 offers
autoregressive and moving average terms, each type
up to degree five, plus two seasonal terms (1 or 2
years); it also warns the user about including a con-
stant term, when one is indicated.

ARIMA modelling is based only on the math-
ematical properties of the series and not on the
dynamics of infectious disease transmission. The
nature of the observed events is irrelevant.

Estimation
Once the initial model has been specified, estimates
can be made for the parameters, i.e. numerical val-
ues for the parameters can be derived from the ob-
servations in the series. This does not usually require
any decision on the part of the user. Estimation is
iterative, by the least squares method. Should the
estimation procedure fail to converge, the user may
choose initial values different from the default ones,
but we have never had to do this.

Model refinement
Apart from the estimated parameter values, the pro-
cedures used by most software generates confidence
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intervals, significance levels, model sums of squares
and several closeness-of-fit statistics. The software
can also display graphs of the observed and the esti-
mated values for the series and of the corresponding
residuals (see below). How best to use these indica-
tors to select which terms to retain in the model and
which to exclude is arcane. The meaning of each
individual indicator is fairly clear, but how to com-
bine them to arrive at a decision is far less so. In
practice, we have found the significance level of the
parameters to be the most useful in this respect.
Excluded first from the model are the least signifi-
cant parameters, the remaining parameters are re-
estimated (together with their significance levels),
the least significant are excluded from the param-
eters remaining, and so on reiteratively until only the
most significant parameters remain. As far as the
significance level is concerned, a permissive rather
than a restrictive approach is indicated, as has been
recommended for other forms of modelling (4); in
this way parameters with P-values less than, say 0.1,
can be retained rather than using a stricter cut-off
level of P = 0.05 or P = 0.01.

In this respect, the following points should be
borne in mind. 1) Little or no harm is done by leav-
ing nonsignificant parameters in the model; the con-
fidence intervals of the other parameters may be
unnecessarily widened, but this effect seems to be
small in ARIMA modelling (e.g. compared with
logistic regression). Parsimony is not as important
when the objective is useful forecasting as when it is
the theoretical understanding of the epidemic proc-
ess, which ARIMA models are not designed to
clarify. 2) When more than one parameter is non-
significant, the higher-degree parameters should be
eliminated first, and the model tested again. 3) There
should be greater reluctance to drop seasonal pa-
rameters than regular parameters, because of their
importance for forecasting.

The residuals, i.e. the difference between each
past observation and its expected value according to
the model, should also be inspected; values for these
are provided by the statistical package. Residuals
should ideally be small, as frequently positive as
negative, and show no secular or seasonal trend.

Forecasting
Once a satisfactory model has been obtained, it can
be used to forecast expected numbers of cases for a
given number of future time intervals. A starting
point and a duration have to be chosen, with the last
observation in the series being a natural starting
point for forecasting. The number of intervals into
the future that a forecast should be attempted de-

pends on the degree of the model (i.e., the highest
degree of any parameter it contains) and care should
be taken in making forecasts for a number of inter-
vals greater than the degree of the model. If the
model is of the first degree, each forecasted value
depends only on the previous value in the series; for
the first forecasted value this would usually be the
last observation, but the second forecasted value
would be based entirely on the first forecast, and so
on. Basing subsequent forecasts on previous fore-
casts so greatly increases their confidence intervals
as to make them rapidly useless. In contrast, a sea-
sonal term makes it more reasonable to try and fore-
cast for a whole year, because the later forecasts are
based at least in part on observations (because of the
seasonal parameter(s)) as well as on previous fore-
casts (because of the lower-degree parameters).

A simple visual inspection of the forecasted
series following the observed series can make it
easier to decide whether the forecasts make sense in
relation to the series of observations. If there is a
clear time trend in the original (undifferenced) se-
ries, it should appear in the forecasts. A clear peri-
odicity in the series should also be reflected in the
forecasts. Forecasts that appear unreasonable to the
experienced eye should prompt a reassessment of
the whole process.

It is easy to test the model by choosing as the
starting point for forecasing not the last observation
but an earlier one since subsequent past observa-
tions can then be compared with their "forecasted"
value; however, since such observations have served
to estimate the model parameters, this cannot be
considered a rigorous test.

Fig. 1 a) shows a series of Campylobacter notifi-
cations, followed by forecasts for 1996 generated by
a pure moving average model of degrees 1, 2, 13 and
26. These forecasts are credible: they reflect the
seasonal variations and the confidence limits are
plausible.

Fig. 2 shows a series of measles notifications.
A reciprocal transformation was applied, as recom-
mended by SSS1; the model is both autoregressive,
of degrees 1 and 2, and moving average, of degree 13.
The forecasts are patently absurd since the estimated
numbers of notifications sometimes lie outside their
own confidence interval. Fig. 3 shows forecasts gen-
erated from the same series, but untransformed.
These results are more plausible, but their usefulness
is limited to showing that more than two or three
notifications per interval probably represents an ex-
cess. Fig. 3 also shows that the lower confidence limit
and the forecasts themselves can be negative. Nega-
tive forecasted values are taken to be zero, but they
throw doubt on the adequacy of the model. In this
series, there is a preponderance of small values (0
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Fig. 2. Provisional numbers of notifications of mea-
sles infections, per 28-day interval, Montreal, Canada,
1990 to mid-1994, followed by forecasts based on the
differenced and reciprocally transformed series, for
the next 13 intervals.
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Fig. 4. Forecasted and observed numbers of notifica-
tions of Campylobacter infections, per 28-day period,
Montreal, Canada, 1997 (solid line: observations; dotted
line: forecasts; dashed lines: 95% forecast intervals).
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and 1), which does not meet the normality assump-
tion; hence the poor performance of the method.

Using the forecasts
Series should be identified precisely; for example,
"Acute hepatitis B, provisional numbers of con-
firmed cases, per month". Otherwise, the forecasts
may later be compared with the wrong series of
observations.

Fig. 3. Provisional numbers of notifications of mea-
sles infections, per 28-day interval, Montreal, Canada,
1990 to mid-1994, followed by forecasts (dotted line)
based on the original series, for the next 13 intervals
(dashed line: 95% forecast intervals).
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The forecast intervals are as important as the
forecasts themselves. Clearly, the upper limit is of
particular interest, since it suggests that these is a
significant excess of reported cases if it is exceeded
by the observations. The lower limit can sometimes
be of use if the implementation of a disease control
programme is accompanied or followed by a signifi-
cant decrease in reported cases.

In practice, the most important point is to keep
the forecasts at hand, ideally on display, and to write
in new observations as soon as they become avail-
able. Otherwise, the exercise will have no chance of
helping to detect outbreaks sooner than otherwise
possible.

Fig. 4 presents an example of the use of fore-
casts for the routine surveillance of infectious
diseases. Shown are the forecasted numbers of
Campylobacter notifications for the 13 four-week
periods of 1997, with their 95% confidence intervals.
The forecasts are based on the series presented in
Fig. 1, extended through 1996, and are similar to
the forecasts for 1996. Significant excess numbers
of cases occured during the 8th and 11th periods of
1997, which are not related to known outbreaks of
the disease. Demonstrating that the first excess was
outside the forecasted range was an incentive to in-
vestigate the reported cases, which we do not do
routinely; unfortunately, however, this did not
uncover a common source or mode of transmission.
Two periods later, the occurrence of an even greater
excess at a time when the number of notifications
should have decreased prompted us to intensify the
investigation, which is continuing.
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Updating the forecasts
How often the forecasts need to be updated depends
on the degree of the model and on the length of the
series of forecasts. A model without seasonal terms
will need to be updated several times a year. Confi-
dence intervals that widen rapidly as time increases
from the starting point of the forecasts also indicate
a model that needs frequent updating. In contrast, a
model with at least one strong seasonal parameter
may yield good forecasts for a year.

Should an excess seem to occur which would,
if confirmed as an outbreak, require a large-scale
public health intervention, it may be prudent to re-
peat the modelling and forecasting with a series that
goes right up to the point where the apparent excess
begins.

The updating can be done in two ways. The
model may be saved and can be reapplied to the
original series with extra observations added at
the end to give forecasts based on a later starting
point. Alternatively, a new model can be fitted to the
longer series; this is probably preferable, since fitting
a model is quick, especially when the old model is
used as a guide, and it makes better use of the addi-
tional observations.

Discussion
ARIMA modelling is a useful tool for interpreting
surveillance data and has helped us interpret more
rapidly any increases in some common reportable
diseases. However, we have not been able to model
adequately some diseases that are rare but important
because of their severity, such as meningococcal
meningitis.

Other modelling techniques have been devel-
oped for such situations. The INAR (integer-valued
autoregressive) model (5) does not require that
the observations have a normal distribution, and it
generates confidence intervals that are integers,
as are the observations themselves. However, the
currently available software for INAR is not as
flexible and user-friendly as SSS1 (Lambert J,
Ranger N, Roy R. INAR, XINAR and INARG
programs, mimeographed text, and diskette, 1993)
and we have not so far been able to apply INAR
usefully.

Use of Markov chain analysis (6) can provide
the probability that the next observation will be 0, 1,
etc. up to the largest observation in the series, which
can be useful for forecasting very rare diseases.
However, there is no widely available statistical
package to perform the calculations. Such calcula-
tions are straightforward if the range of observations

is not too large and if probabilities are required only
for the next interval. To obtain probabilities for
several consecutive intervals, matrix multiplication is
required. Markov chain analysis can be applied to
the series of measles notifications shown in Fig. 3 by
creating a two-by-two table of how often each ob-
served value (here, 0 to 6) is followed by itself or
each other value, and transforming the frequencies
of these pairs into probabilities by dividing them by
the overall frequency of the first value of the pair.
This gives an estimate of how likely it is that a 0, say,
will be followed the next period by a 0, a 1, a 2 etc. In
this analysis, we collapsed the rows and columns cor-
responding to 3, 4, 5 and 6 cases because of small
numbers. This gives the probabilities of observing 0
case one period, followed by 0, 1, 2 or -3 cases the
next period, as 0.63, 0.20, 0.10 and 0.07, respectively,
based on 30 pairs of observations. The probabilities
of observing one case one period, followed by 0, 1, 2
or ¢-3 cases the next period are 0.53, 0.27, 0.13 and
0.07, respectively, based on 15 pairs of observations.
Thus, if 0 cases or 1 case is observed in a period,
which is the most common occurrence, then it takes
at least 3 cases the next period for the sequence to be
an unlikely occurrence (P = 0.07). This is almost the
same as the upper limit given by ARIMA modelling.
This example shows that in some situations a useful
Markov chain analysis can be carried out with no
more than pencil and paper.

Conclusion
In our experience, the usefulness of forecasting ex-
pected numbers of infectious disease reports consists
not so much in detecting outbreaks or providing
probability statements, but in giving decision-makers
a clearer idea of the variability to be expected among
future observations. This becomes one more
element in the subjective determination of whether
an unusual situation is or is not developing. In our
experience, variability has often been much larger
than we would have otherwise expected, and this has
helped us decide whether further surveillance and/or
a public health intervention was required.

Ideally, every reported case of a transmissible
disease should be investigated and the causes of its
occurrence fully understood. Nowhere is this possi-
ble, for scientific and practical reasons. Since the
smaller the population on which observations are
made, the larger their variability is likely to be, we
believe the intelligent application ofARIMA model-
ling in smaller jurisdictions can help focus public
health efforts on unusual situations, and avoid inves-
tigating random fluctuations - an effort unlikely to
be profitable.
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Resume

Application de l'analyse des series
chronologiques a la surveillance des
maladies infectieuses
L'article envisage les aspects pratiques de la
methode ARIMA (autoregressive, integrated, mov-
ing average) appliqu6e a la surveillance des mala-
dies infectieuses declarables, et notamment le
systeme SSS1 (Statistical Surveillance System)
elabor6 par les Centers for Disease Control and
Prevention.

Les etapes principales necessaires de la
mod6lisation ARIMA sont les suivantes: choix des
s6ries chronologiques, transformation des s6ries,
choix du modele, estimation des parametres,
pr6visions et mise a jour des previsions. Les s6ries
choisies pour le modele doivent couvrir au moins 2
ans pour, le cas 6ch6ant, pouvoir rendre compte
des variations saisonnieres de frequence de la
maladie. En cas de flambee 6pidemique, la periode
correspondante peut etre exclue du modele de
facon a refl6ter la situation habituelle. La s6rie doit
etre d6coup6e en p6riodes (jours, semaines, mois,
etc.) suffisamment longues pour que le nombre
d'observations (de cas) ait une distribution normale
dans chacune d'elles. II est parfois n6cessaire de
transformer la s6rie, pour faire en sorte que sa
moyenne et sa variance soient "<stationnaires>',
c'est a dire restent constantes au cours du temps,
condition d'existence du modele. Un modele
ARIMA peut inclure des termes qui traduisent
l'influence sur chaque p6riode de la periode
ant6rieure, de celle qui pr6cede cette p6riode
ant6rieure, et ainsi de suite, ou encore des p6riodes
correspondantes des annees pr6cedentes (termes
de saisonnalit6). Le choix des termes a inclure dans

le modele repose sur la correlation entre le nombre
de cas dans la periode et chacune des p6riodes
prec6dentes. La longueur de la periode pendant
laquelle on peut faire des pr6visions fiables d6pend
du modele, et en particulier de la pr6sence ou non
de termes de saisonnalite dans le modele. La
frequence avec laquelle les previsions doivent etre
remises a jour d6pend de meme du modele, mais
aussi de l'intervalle qui s6pare les futures observa-
tions des pr6visions correspondantes. Plus elles
sont proches, plus durable est la validit6 du modele.

On trouvera decrits et discutes des exemples
de modeles plus ou moins adequats. 11 existe
d'autres m6thodes, le modele INAR et I'analyse des
chaines de Markov par exemple, applicables en cas
d'echec de la m6thode ARIMA; elles sont toutefois
moins pratiques.

La modelisation ARIMA peut etre mise en
ceuvre par des non-specialistes convenablement
form6s travaillant pour des organismes locaux,
et permet d'affirmer que l'apparition d'un grand
nombre de cas pourrait representer le d6but d'une
epidemie. 11 ressort toutefois de notre exp6rience
que son interet principal est de donner une estima-
tion de la variabilite probable des futures observa-
tions. 11 est tres souvent arriv6 que la variabilite soit
beaucoup plus importante que pr6vu, et nous avons
pu d6cider de la n6cessit6 d'une intervention.
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